A "late-but-fitter revertant cell" explains the high frequency of revertant mosaicism in epidermolysis bullosa
نویسندگان
چکیده
Revertant mosaicism, or "natural gene therapy", is the phenomenon in which germline mutations are corrected by somatic events. In recent years, revertant mosaicism has been identified in all major types of epidermolysis bullosa, the group of heritable blistering disorders caused by mutations in the genes encoding epidermal adhesion proteins. Moreover, revertant mosaicism appears to be present in all patients with a specific subtype of recessive epidermolysis bullosa. We therefore hypothesized that revertant mosaicism should be expected at least in all patients with recessive forms of epidermolysis bullosa. Naturally corrected, patient-own cells are of extreme interest for their promising therapeutic potential, and their presence in all patients would open exciting, new treatment perspectives to those patients. To test our hypothesis, we determined the probability that single nucleotide reversions occur in patients' skin using a mathematical developmental model. According to our model, reverse mutations are expected to occur frequently (estimated 216x) in each patient's skin. Reverse mutations should, however, occur early in embryogenesis to be able to drive the emergence of recognizable revertant patches, which is expected to occur in only one per ~10,000 patients. This underestimate, compared to our clinical observations, can be explained by the "late-but-fitter revertant cell" hypothesis: reverse mutations arise at later stages of development, but provide revertant cells with a selective growth advantage in vivo that drives the development of recognizable healthy skin patches. Our results can be extrapolated to any other organ with stem cell division numbers comparable to skin, which may offer novel future therapeutic options for other genetic conditions if these revertant cells can be identified and isolated.
منابع مشابه
Natural gene therapy in dystrophic epidermolysis bullosa.
BACKGROUND Dystrophic epidermolysis bullosa is a genetic blistering disorder caused by mutations in the type VII collagen gene, COL7A1. In revertant mosaicism, germline mutations are corrected by somatic events resulting in a mosaic disease distribution. This "natural gene therapy" phenomenon long has been recognized in other forms of epidermolysis bullosa but only recently in dystrophic epider...
متن کاملRevertant mosaicism in junctional epidermolysis bullosa due to multiple correcting second-site mutations in LAMB3.
Revertant mosaicism due to in vivo reversion of an inherited mutation has been described in the genetic skin disease epidermolysis bullosa (EB) for the genes KRT14 and COL17A1. Here we demonstrate the presence of multiple second-site mutations, all correcting the germline mutation LAMB3:c.628G-->A;p.E210K, in 2 unrelated non-Herlitz junctional EB patients with revertant mosaicism. Both probands...
متن کاملRevertant Mosaicism in Epidermolysis Bullosa Caused by Mitotic Gene Conversion
Mitotic gene conversion acting as reverse mutation has not been previously demonstrated in human. We report here that the revertant mosaicism of a compound heterozygous proband with an autosomal recessive genodermatosis, generalized atrophic benign epidermolysis bullosa, is caused by mitotic gene conversion of one of the two mutated COL17A1 alleles. Specifically, the maternal allele surrounding...
متن کاملRevertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation.
Generalized atrophic benign epidermolysis bullosa is an autosomal recessive subepidermal blistering disease typified by null mutations in COL17A1. In 1 large kindred, affected individuals were homozygous for a 2-bp deletion in COL17A1, 4003delTC, which resulted in a downstream premature termination codon, nonsense-mediated mRNA decay, and abrogation of type XVII collagen synthesis. Interestingl...
متن کاملCutaneous mosaicism: right before our eyes.
Autosomal recessive cutaneous disorders, including various types of epidermolysis bullosa (EB), usually manifest shortly after birth. The clinical course of these diseases is often characterized by severe complications, limited therapeutic options, and a poor prognosis. A study by Pasmooij et al. reported in this issue of the JCI unravels the molecular mechanisms by which germline mutations in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018